• Tue. Dec 1st, 2020

Dimancherouge

Technology

Seafloor evidence for pre-shield volcanism above the Tristan da Cunha mantle plume

  • 1.

    Clague, D. & Dalrymple, G. B. The Hawaiian-Emperor volcanic chain: part I. Geologic evolution. US Geol. Surv. Prof. Pap. 1350, 5–54 (1987).

  • 2.

    Hagen, R. A., Baker, N. A., Naar, D. F. & Hey, R. N. A SeaMARC II survey of recent submarine volcanism near Easter Island. Mar. Geophys. Res. 12, 297 (1990).


    Google Scholar
     

  • 3.

    Fretzdorff, S., Haase, K. M. & Garbe-Schönberg, C. D. Petrogenesis of lavas from the Umu volcanic field in the young hotspot region west of Easter Island, southeastern Pacific. Lithos 38, 23–40 (1996).

    ADS 
    CAS 

    Google Scholar
     

  • 4.

    Devey, C. W. et al. Giving birth to hotspot volcanoes: distribution and composition of young seamounts from the seafloor near Tahiti and Pitcairn islands. Geology 31, 395–398 (2003).

    ADS 

    Google Scholar
     

  • 5.

    Sobolev, A. V., Hofmann, A. W., Sobolev, S. V. & Nikogosian, I. K. An olivine-free mantle source of Hawaiian shield basalts. Nature 434, 590–597 (2005).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 6.

    O’Connor, J. M. & le Roex, A. P. South Atlantic hot spot-plume systems: 1. Distribution of volcanism in time and space. Earth Planet. Sci. Lett. 113, 343–364 (1992).

    ADS 

    Google Scholar
     

  • 7.

    Baker, P. E., Gass, I. G., Harris, P. G. & le Maitre, R. W. The volcanological report of the royal society expedition to Tristan da Cunha, 1962. Philos. Trans. R. Soc. Lond. 256, 439–578 (1964).

    ADS 

    Google Scholar
     

  • 8.

    Hards, V. L. Assessment of Volcanic Activity in the Wake of the Seismic Episode of 29/30 July 2004 on Tristan da Cunha, South Atlantic Ocean. British Geological Survey Commissioned Report CR/04/235 (British Geological Survey, Keyworth, Nottingham, 2004).

  • 9.

    O’Mongain, A., Ottemoller, L., Brian, B., Galloway, D. & Booth, D. Seismic activity associated with a probable submarine eruption near Tristan da Cunha, July 2004–July 2006. Seismol. Res. Lett. 78, 375–382 (2007).


    Google Scholar
     

  • 10.

    Reagan, M. K., Turner, S., Legg, M., Sims, K. W. W. & Hards, V. L. 238U- and 232Th-decay series constraints on the timescales of crystal fractionation to produce the phonolite erupted in 2004 near Tristan da Cunha, South Atlantic Ocean. Geochim. Cosmochim. Acta 72, 4367–4378 (2008).

    ADS 
    CAS 

    Google Scholar
     

  • 11.

    Le Roex, A. P., Cliff, R. A. & Adair, B. J. I. Tristan da Cunha, South Atlantic: geochemistry and petrogenesis of a basanite-phonolite lava series. J. Petrol. 31, 779–812 (1990).

    ADS 

    Google Scholar
     

  • 12.

    Dunkley, P. N. Volcanic Hazard Assessment of Tristan da Cunha. British Geological Survey Commissioned Report CR/02/146N, 46 pp. (British Geological Survey, Keyworth, Nottingham, 2002).

  • 13.

    Weit, A. et al. The magmatic system beneath the Tristan da Cunha Island: insights from thermobarometry, melting models and geophysics. Tectonophysics 716, 64–76 (2017).

    ADS 
    CAS 

    Google Scholar
     

  • 14.

    Hicks, A., Barclay, J., Mark, D. F. & Loughlin, S. Tristan da Cunha: constraining eruptive behavior using the 40Ar/39Ar dating technique. Geology 40, 723–726 (2012).

    ADS 

    Google Scholar
     

  • 15.

    Siebert, L., Cottrell, E., Venzke, E. & Edwards, B. Appendix 2—catalog of Earth’s documented holocene eruptions. In The Encyclopedia of Volcanoes (Second Edition) (ed. Sigurdsson, H.) 1367–1400 (Academic Press, Amsterdam, 2015) https://doi.org/10.1016/B978-0-12-385938-9.00015-8.

  • 16.

    de Silva, S. & Lindsay, J. M. Chapter 15—primary volcanic landforms. In The Encyclopedia of Volcanoes (Second Edition) (ed. Sigurdsson, H.) 273–297 (Academic Press, Amsterdam, 2015) https://doi.org/10.1016/B978-0-12-385938-9.00015-8.

  • 17.

    O’Connor, J. M. & Duncan, R. A. Evolution of the Walvis Ridge-Rio Grande Rise hot spot system: implications for African and South American Plate motions over plumes. J. Geophys. Res.: Solid Earth 95, 17475–17502 (1990).


    Google Scholar
     

  • 18.

    Gibson, S. A., Thompson, R. N. & Day, J. A. Timescales and mechanisms of plume–lithosphere interactions: 40Ar/39Ar geochronology and geochemistry of alkaline igneous rocks from the Paraná–Etendeka large igneous province. Earth Planet. Sci. Lett. 251, 1–17 (2006).

    ADS 
    CAS 

    Google Scholar
     

  • 19.

    O’Connor, J. M. et al. Hotspot trails in the South Atlantic controlled by plume and plate tectonic processes. Nat. Geosci. 5, 735–738 (2012).

    ADS 

    Google Scholar
     

  • 20.

    Rohde, J. K., van den Bogaard, P., Hoernle, K., Hauff, F. & Werner, R. Evidence for an age progression along the Tristan-Gough volcanic track from new 40Ar/39Ar ages on phenocryst phases. Tectonophysics 604, 60–71 (2013).

    ADS 
    CAS 

    Google Scholar
     

  • 21.

    Geissler, W. H., Jokat, W., Jegen, M. & Baba, K. Thickness of the oceanic crust, the lithosphere, and the mantle transition zone in the vicinity of the Tristan da Cunha hot spot estimated from ocean-bottom and ocean-island seismometer receiver functions. Tectonophysics 716, 33–51 (2017).

    ADS 
    CAS 

    Google Scholar
     

  • 22.

    Pérez-Díaz, L. & Eagles, G. A new high-resolution seafloor age grid for the South Atlantic. Geochem. Geophys. Geosyst. 18, 457–470 (2017).

    ADS 

    Google Scholar
     

  • 23.

    Morgan, W. J. Convection plumes in the lower mantle. Nature 230, 42–43 (1971).

    ADS 

    Google Scholar
     

  • 24.

    Courtillot, V., Davaille, A., Besse, J. & Stock, J. Three distinct types of hotspots in the Earth’s mantle. Earth Planet. Sci. Lett. 205, 295–308 (2003).

    ADS 
    CAS 

    Google Scholar
     

  • 25.

    French, S. W. & Romanowicz, B. Broad plumes rooted at the base of the Earth’s mantle beneath major hotspots. Nature 525, 95–99 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 26.

    Anderson, D. L. Scoring hotspots: The plume and plate paradigms. In Plates, plumes, and paradigms (eds Foulger, G. R., Natland, J. H., Presnall, D. C. & Anderson, D. L.) Geological Society of America Special Paper 388, 31–54 (Geological Society of America, 2005).

  • 27.

    O’Connor, J. M. & Jokat, W. Tracking the Tristan-Gough mantle plume using discrete chains of intraplate volcanic centers buried in the Walvis Ridge. Geology 43, 715–718 (2015).

    ADS 

    Google Scholar
     

  • 28.

    Gassmöller, R., Dannberg, J., Bredow, E., Steinberger, B. & Torsvik, T. H. Major influence of plume-ridge interaction, lithosphere thickness variations, and global mantle flow on hotspot volcanism—the example of Tristan. Geochem. Geophys. Geosyst. 17, 1454–1479 (2016).

    ADS 

    Google Scholar
     

  • 29.

    Baba, K. et al. Marine magnetotellurics imaged no distinct plume beneath the Tristan da Cunha hotspot in the southern Atlantic Ocean. Tectonophysics 716, 52–63 (2017).

    ADS 
    CAS 

    Google Scholar
     

  • 30.

    Ryberg, T., Geissler, W. H., Jokat, W. & Pandey, S. Uppermost mantle and crustal structure at Tristan da Cunha derived from ambient seismic noise. Earth Planet. Sci. Lett. 471, 117–124 (2017).

    ADS 
    CAS 

    Google Scholar
     

  • 31.

    Schlömer, A., Geissler, W. H., Jokat, W. & Jegen, M. Hunting for the Tristan mantle plume—an upper mantle tomography around the volcanic island of Tristan da Cunha. Earth Planet. Sci. Lett. 462, 122–131 (2017).

    ADS 

    Google Scholar
     

  • 32.

    Schlömer, A., Geissler, W. H., Jokat, W. & Jegen, M. Seismicity in the vicinity of the Tristan da Cunha hot spot: particular plate tectonics and mantle plume presence. J. Geophys. Res.: Solid Earth 122, 10427–10439 (2017).

    ADS 

    Google Scholar
     

  • 33.

    Bonadio, R. et al. Mantle beneath the Tristan da Cunha hotspot from probabilistic Rayleigh-wave inversion and petrological modeling. Geochem. Geophys. Geosyst. 19, 1412–1428 (2018).

    ADS 

    Google Scholar
     

  • 34.

    Wright, D. J. et al. ArcGIS Benthic Terrain Modeler (BTM) v. 3.0. Environmental Systems Research Institute, NOAA Coastal Services Center, Massachusetts Office of Coastal Zone Management. http://esriurl.com/5754 (2012).

  • 35.

    Geissler, W. H. Electromagnetic, gravimetric and seismic measurements to investigate the Tristan da Cunha hot spot and its role in the opening of the South Atlantic Ocean (MARKE)—Cruise No. MSM24—December 27, 2012—January 21, 2013—Walvis Bay (Namibia)—Cape Town (South Africa). MARIA S. MERIAN-Berichte, 56 pp. (DFG-Senatskommission für Ozeanographie, Bremen, 2014) https://doi.org/10.2312/cr_msm24.

  • 36.

    Jegen, M., Geissler, W., Maia, M., Baba, K., Kirk, H. TRISTAN: electromagnetic, gravimetric and seismic measurements to investigate the Tristan da Cunha hot spot and its role in the opening of the South-Atlantic—Cruise No. MSM20/2—January 17, 2012—February 15, 2012—Walvis Bay (Namibia)—Recife (Brazil). MARIA S. MERIAN-Berichte, 52 pp. (DFG-Senatskommission für Ozeanographie, Bremen, 2015) https://doi.org/10.2312/cr_msm20_2.

  • 37.

    Holcomb, R. T. & Searle, R. C. Large landslides from oceanic volcanoes. Mar. Geotechnol. 10, 19–32 (1991).


    Google Scholar
     

  • 38.

    Cliff, R. A., Baker, P. E. & Mateer, N. J. Geochemistry of Inaccessible Island volcanics. Chem. Geol. 92, 251–260 (1991).

    ADS 
    CAS 

    Google Scholar
     

  • 39.

    Chevallier, L., Rex, D. C. & Verwoerd, W. J. Geology and geochronology of Inaccessible Island, South Atlantic. Geol. Mag. 129, 1–16 (1992).

    ADS 
    CAS 

    Google Scholar
     

  • 40.

    Hensen, C., et al. Marine transform faults and fracture zones: a joint perspective integrating seismicity, fluid flow and life. Front. Earth Sci. 7, https://doi.org/10.3389/feart.2019.00039 (2019).

  • 41.

    Cann, J. R. et al. Corrugated slip surfaces formed at ridge–transform intersections on the Mid-Atlantic Ridge. Nature 385, 329–332 (1997).

    ADS 

    Google Scholar
     

  • 42.

    Ryan W. B. F. et al. Global multi-resolution topography (GMRT) synthesis. Geochem. Geophys. Geosyst. 10, https://doi.org/10.1029/2008GC002332 (2009).

  • 43.

    Teledyne RESON, ParaSound Deep-sea Parametric Sub-bottom Profiler. http://www.teledynemarine.com/Lists/Downloads/Parasound_en.pdf (2020).

  • 44.

    Woodhead, J. D. Temporal geochemical evolution in oceanic intra-plate volcanics: a case study from the Marquesas (French Polynesia) and comparison with other hotspots. Contrib. Mineral. Petrol. 111, 458–467 (1992).

    ADS 
    CAS 

    Google Scholar
     

  • 45.

    Lipman, P. W. & Calvert, A. T. Modeling volcano growth on the Island of Hawaii: deep-water perspectives. Geosphere 9, 1348–1383 (2013).

    ADS 

    Google Scholar
     

  • 46.

    Bianco, T. A., Ito, G., van Hunen, J., Ballmer, M. D. & Mahoney, J. J. Geochemical variation at the Hawaiian hot spot caused by upper mantle dynamics and melting of a heterogeneous plume. Geochem. Geophys. Geosyst. 9, https://doi.org/10.1029/2008GC002111 (2008).

  • 47.

    Clague, D. A. & Sherrod, D. R. Growth and dgradation of Hawaiian volcanoes. In Characteristics of Hawaiian Volcanoes (eds Poland, M. P., Takahashi, T. J. & Landowski, C. M.) US Geological Survey Professional Paper 2801, ch. 3, 97–146 (U.S. Geological Survey, Reston, VA, 2014).

  • 48.

    Schnur, S. R. & Gilbert, L. A. Detailed volcanostratigraphy of an accreted seamount: implications for intraplate seamount formation. Geochem. Geophys. Geosyst. 13, Q0AM05, https://doi.org/10.1029/2012GC004301 (2012).

    Article 

    Google Scholar
     

  • 49.

    Guillou, H., Garcia, M. O. & Turpin, L. Unspiked K-Ar dating of young volcanic rocks from Loihi and Pitcairn hot spot seamounts. J. Volcanol. Geotherm. Res. 78, 239–249 (1997).

    ADS 
    CAS 

    Google Scholar
     

  • 50.

    Humphreys, E. R. & Niu, Y. On the composition of ocean island basalts (OIB): the effects of lithospheric thickness variation and mantle metasomatism. Lithos 112, 118–136 (2009).

    ADS 
    CAS 

    Google Scholar
     

  • 51.

    Argus, D. F., Gordon, R. G. & DeMets, C. Geologically current motion of 56 plates relative to the no-net-rotation reference frame. Geochem. Geophys. Geosyst. 12, Q11001, https://doi.org/10.1029/2011GC003751 (2011).

  • 52.

    USGS, ANSS Comprehensive Earthquake Catalog, https://www.usgs.gov/natural-hazards/earthquake-hazards/earthquakes, accessed via GeoMapApp http://www.geomapapp.org (2018).

  • 53.

    Humphris, S. E., Thompson, G., Schilling, J.-G. & Kingsley, R. H. Petrological and geochemical variations along the Mid-Atlantic Ridge between 46°S and 32°S: influence of the Tristan da Cunha mantle plume. Geochim. Cosmochim. Acta 49, 1445–1464 (1985).

    ADS 
    CAS 

    Google Scholar
     

  • 54.

    Tucholke, B. E., Behn, M. D., Buck, W. R. & Lin, J. Role of melt supply in oceanic detachment faulting and formation of megamullions. Geology 36, 455–458 (2008).

    ADS 

    Google Scholar
     

  • 55.

    Searle, R. C. et al. FUJI Dome: a large detachment fault near 64°E on the very slow-spreading southwest Indian Ridge. Geochem. Geophys. Geosyst. 4, 9105 (2003).

    ADS 

    Google Scholar
     

  • 56.

    Ildefonse, B. et al. Oceanic core complexes and crustal accretion at slow-spreading ridges. Geology 35, 623–626 (2007).

    ADS 

    Google Scholar
     

  • 57.

    Escartín, J. et al. Central role of detachment faults in accretion of slow-spreading oceanic lithosphere. Nature 455, 790–794 (2008).

    ADS 
    PubMed 

    Google Scholar
     

  • 58.

    Blackman, D. K., Canales, J. P. & Harding, A. Geophysical signatures of oceanic core complexes. Geophys. J. Int. 178, 593–613 (2009).

    ADS 

    Google Scholar
     

  • 59.

    Smith, D. K., Escartín, J., Schouten, H. & Cann, J. R. Fault rotation and core complex formation: significant processes in seafloor formation at slow-spreading mid-ocean ridges (Mid-Atlantic Ridge, 13°–15°N). Geochem. Geophys. Geosyst. 9, Q03003 (2008).

    ADS 

    Google Scholar
     

  • 60.

    Allen, S. R., Fiske, R. S. & Tamura, Y. Effects of water depth on pumice formation in submarine domes at Sumisu, Izu-Bonin arc, western Pacific. Geology 38, 391–394 (2010).

    ADS 
    CAS 

    Google Scholar
     

  • 61.

    Jutzeler, M. et al. On the fate of pumice rafts formed during the 2012 Havre submarine eruption. Nat. Commun. 5, 3660 (2014).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 62.

    Caress, D. W. & Chayes, D. N. MB-System: Mapping the Seafloor. https://www.mbari.org/products/research-software/mb-system (2017).

  • 63.

    Du Preez, C. A new arc–chord ratio (ACR) rugosity index for quantifying three-dimensional landscape structural complexity. Landsc. Ecol. 30, 181–192 (2015).


    Google Scholar
     

  • 64.

    Lundblad, E. R. et al. A benthic terrain classification scheme for American Samoa. Mar. Geod. 29, 89–111 (2006).


    Google Scholar
     

  • 65.

    Weiss, A. D. Topographic position and landforms analysis (Map Gallery Poster). Proceedings of the 21st Annual ESRI User Conference (San Diego, CA, 2001).

  • 66.

    Erdey-Heydorn, M. D. An ArcGIS seabed characterization toolbox developed for investigating benthic habitats. Mar. Geod. 31, 318–358 (2008).


    Google Scholar
     

  • 67.

    Sandmeier, K. J. REFLEXW Version 7.0-program for the Processing of Seismic, Acoustic or Electromagnetic Reflection, Refraction and Transmission Data. User’s Manual, 578 (Sandmeier geophysical research, 2012).

  • 68.

    Wintersteller, P., Kammann, J., Strack, A. & Geissler, W. H. Composite Grid (DTM) and Backscatter Mosaics of EM120 and EM122 Multibeam Echosounder (MBES) Bathymetry of Cruises MSM20-2 and MSM24 around Tristan da Cunha. PANGAEA, https://doi.org/10.1594/PANGAEA.906110 (unpublished dataset) (2019).

  • 69.

    NGDC. Multibeam collection for KN145L17: Multibeam Data Collected Aboard Knorr from 1996-04-04 to 1996-05-08, Departing from Cape Town, South Africa and Returning to Montevideo, Uruguay (National Geophysical Data Center, Boulder, CO, 1996).

  • 70.

    UKHO. Tristan da Cunha, HMS Protector. Report 1.1 (The United Kingdom Hydrographic Office, 2013).

  • Source Article