• Wed. Dec 2nd, 2020

Dimancherouge

Technology

Cropland expansion in the United States produces marginal yields at high costs to wildlife

  • 1.

    USDA. 2012 National Resources Inventory: Summary Report. http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcseprd396218.pdf (2015).

  • 2.

    U.S. EPA. Biofuels and the Environment: The Second Triennial Report to Congress. 159 (2018).

  • 3.

    Monfreda, C., Ramankutty, N. & Foley, J. A. Farming the planet: 2. Geographic distribution of crop areas, yields, physiological types, and net primary production in the year 2000. Glob. Biogeochem. Cycles 22, https://doi.org/10.1029/2007GB002947 (2008).

  • 4.

    Cassidy, E. S., West, P. C., Gerber, J. S. & Foley, J. A. Redefining agricultural yields: from tonnes to people nourished per hectare. Environ. Res. Lett. 8, 034015 (2013).

    ADS 

    Google Scholar
     

  • 5.

    Spawn, S. A., Lark, T. J. & Gibbs, H. K. Carbon emissions from cropland expansion in the United States. Environ. Res. Lett. 14, 045009 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • 6.

    Yu, Z., Lu, C., Tian, H. & Canadell, J. G. Largely underestimated carbon emission from land use and land cover change in the conterminous US. Glob. Change Biol. 25, 3741–3752 (2019).

  • 7.

    West, P. C. et al. Trading carbon for food: Global comparison of carbon stocks vs. crop yields on agricultural land. Proc. Natl Acad. Sci. USA 107, 19645–19648 (2010).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 8.

    Johnson, J. A., Runge, C. F., Senauer, B., Foley, J. & Polasky, S. Global agriculture and carbon trade-offs. Proc. Natl Acad. Sci. USA 111, 12342–12347 (2014).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 9.

    Lark, T. J., Salmon, J. M. & Gibbs, H. K. Cropland expansion outpaces agricultural and biofuel policies in the United States. Environ. Res. Lett. 10, 044003 (2015).

    ADS 

    Google Scholar
     

  • 10.

    Henwood, W. D. & TOWARD, A. Strategy for the conservation and protection of the world’s temperate grasslands. Gt. Plains Res. 20, 121–134 (2010).


    Google Scholar
     

  • 11.

    Tollefson, J. One million species face extinction. Nature 569, 171 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 12.

    Díaz, S. et al. Summary for Policymakers of the Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. https://www.ipbes.net/sites/default/files/downloads/spm_unedited_advance_for_posting_htn.pdf Advance Unedited Version (2019).

  • 13.

    Werling, B. P. et al. Perennial grasslands enhance biodiversity and multiple ecosystem services in bioenergy landscapes. Proc. Natl Acad. Sci. USA 111, 1652–1657 (2014).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 14.

    Foley, J. A. et al. Global consequences of land use. Science 309, 570–574 (2005).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 15.

    Meehan, T. D., Hurlbert, A. H. & Gratton, C. Bird communities in future bioenergy landscapes of the Upper Midwest. Proc. Natl Acad. Sci. USA 107, 18533–18538 (2010).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 16.

    Thogmartin, W. E. et al. Restoring monarch butterfly habitat in the Midwestern US: ‘all hands on deck’. Environ. Res. Lett. 12, 074005 (2017).

    ADS 

    Google Scholar
     

  • 17.

    Smith, G. W. A Critical Review of the Aerial and Ground Surveys of Breeding Waterfowl in North America. https://apps.dtic.mil/docs/citations/ADA322667 (1995).

  • 18.

    Bakker, K. K. & Higgins, K. F. Planted grasslands and native sod prairie: equivalent habitat for grassland birds? West. North Am. Nat. 69, 235–242 (2009).


    Google Scholar
     

  • 19.

    Dodds, W. K. et al. Comparing ecosystem goods and services provided by restored and native lands. BioScience 58, 837–845 (2008).


    Google Scholar
     

  • 20.

    Lark, T. J., Larson, B., Schelly, I., Batish, S. & Gibbs, H. K. Accelerated conversion of native prairie to cropland in Minnesota. Environ. Conserv. 1–8 https://doi.org/10.1017/S0376892918000437 (2019).

  • 21.

    Wimberly, M. C. et al. Cropland expansion and grassland loss in the eastern Dakotas: New insights from a farm-level survey. Land Use Policy 63, 160–173 (2017).


    Google Scholar
     

  • 22.

    Boryan, C., Yang, Z., Mueller, R. & Craig, M. Monitoring US agriculture: the US Department of Agriculture, National Agricultural Statistics Service, Cropland Data Layer Program. Geocarto Int. 26, 341–358 (2011).


    Google Scholar
     

  • 23.

    Caro, T. Conservation by Proxy: Indicator, Umbrella, Keystone, Flagship, and Other Surrogate Species (Island Press, 2010).

  • 24.

    Yu, Z. & Lu, C. Historical cropland expansion and abandonment in the continental U.S. during 1850 to 2016. Glob. Ecol. Biogeogr. 27, 322–333 (2018).

    MathSciNet 

    Google Scholar
     

  • 25.

    Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A. & Hegewisch, K. C. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. Sci. Data 5, 170191 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 26.

    Haan, N. L. & Landis, D. A. The importance of shifting disturbance regimes in monarch butterfly decline and recovery. Front. Ecol. Evol. 7, 191 (2019).

  • 27.

    Lukens, L. et al. Monarch habitat in conservation grasslands. Front. Ecol. Evol. 8, 13 (2020).

  • 28.

    Reynolds, R. E., Shaffer, T. L., Loesch, C. R. & Cox, R. R. The farm bill and duck production in the prairie pothole region: increasing the benefits. Wildl. Soc. Bull. 34, 963–974 (2006).


    Google Scholar
     

  • 29.

    Walker, J. et al. An integrated strategy for grassland easement acquisition in the Prairie Pothole Region, USA. J. Fish. Wildl. Manag. 4, 267–279 (2013).


    Google Scholar
     

  • 30.

    USDA, N. 2017 Census of Agriculture. https://www.nass.usda.gov/Publications/AgCensus/2017/index.php#full_report (2019).

  • 31.

    USDA. 2015 National Resources Inventory: Summary Report. http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcseprd396218.pdf (2018).

  • 32.

    Yang, L. et al. A new generation of the United States National Land Cover Database: Requirements, research priorities, design, and implementation strategies. ISPRS J. Photogramm. Remote Sens. 146, 108–123 (2018).

    ADS 

    Google Scholar
     

  • 33.

    Estel, S. et al. Mapping farmland abandonment and recultivation across Europe using MODIS NDVI time series. Remote Sens. Environ. 163, 312–325 (2015).

    ADS 

    Google Scholar
     

  • 34.

    Yin, H. et al. Mapping agricultural land abandonment from spatial and temporal segmentation of Landsat time series. Remote Sens. Environ. 210, 12–24 (2018).

    ADS 

    Google Scholar
     

  • 35.

    Yin, H. et al. Monitoring cropland abandonment with Landsat time series. Remote Sens. Environ. 246, 111873 (2020).

    ADS 

    Google Scholar
     

  • 36.

    Anderson, J. R. A Land Use and Land Cover Classification System for Use with Remote Sensor Data (U.S. Government Printing Office, 1976).

  • 37.

    Rogan, J. et al. Land-cover change monitoring with classification trees using landsat TM and ancillary data. Photogramm. Eng. Rem. Sensing 69, 793–804 (2003).

  • 38.

    Johnson, D. M. An assessment of pre- and within-season remotely sensed variables for forecasting corn and soybean yields in the United States. Remote Sens. Environ. 141, 116–128 (2014).

    ADS 

    Google Scholar
     

  • 39.

    Kukal, M. S. & Irmak, S. U.S. agro-climate in 20th century: growing degree days, first and last frost, growing season length, and impacts on crop yields. Sci. Rep. 8, 1–14 (2018).

    ADS 

    Google Scholar
     

  • 40.

    Ramankutty, N., Foley, J. A., Norman, J. & McSweeney, K. The global distribution of cultivable lands: current patterns and sensitivity to possible climate change. Glob. Ecol. Biogeogr. 11, 377–392 (2002).


    Google Scholar
     

  • 41.

    Lubowski, R. N. et al. Environmental Effects of Agricultural Land-use Change: The Role of Economics and Policy https://doi.org/10.22004/ag.econ.33591 (2006).

  • 42.

    Hendricks, N. P. & Er, E. Changes in cropland area in the United States and the role of CRP. Food Policy 75, 15–23 (2018).


    Google Scholar
     

  • 43.

    Alonso, W. Location and land use. Toward a general theory of land rent. Locat. Land Use Gen. Theory Land Rent 204 (1964).

  • 44.

    Wimberly, M. C., Narem, D. M., Bauman, P. J., Carlson, B. T. & Ahlering, M. A. Grassland connectivity in fragmented agricultural landscapes of the north-central United States. Biol. Conserv. 217, 121–130 (2018).


    Google Scholar
     

  • 45.

    Bennett, A. F. Linkages in the Landscape: The Role of Corridors and Connectivity in Wildlife Conservation (Iucn, 1999).

  • 46.

    Helms, D. Readings in the History of the Soil Conservation Service, Washington, DC. Read. Hist. Soil Conserv. Serv. 60–73 https://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/about/history/?cid=nrcs143_021436 (1992).

  • 47.

    Abubakar, M. S., Ahmad, D. & Akande, F. B. A review of farm tractor overturning accidents and safety. Pertanika J. Sci. Technol. 18, 377–385 (2010).


    Google Scholar
     

  • 48.

    Xie, Y., Lark, T. J., Brown, J. F. & Gibbs, H. K. Mapping irrigated cropland extent across the conterminous United States at 30 m resolution using a semi-automatic training approach on Google Earth Engine. ISPRS J. Photogramm. Remote Sens. 155, 136–149 (2019).

    ADS 

    Google Scholar
     

  • 49.

    Scanlon, B. R. et al. Groundwater depletion and sustainability of irrigation in the US High Plains and Central Valley. Proc. Natl Acad. Sci. USA 109, 9320–9325 (2012).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 50.

    Oberhauser, K. & Guiney, M. Insects as flagship conservation species. Terr. Arthropod. Rev. 1, 111–123 (2009).


    Google Scholar
     

  • 51.

    Gustafsson, K. M., Agrawal, A. A., Lewenstein, B. V. & Wolf, S. A. The monarch butterfly through time and space: the social construction of an icon. BioScience 65, 612–622 (2015).


    Google Scholar
     

  • 52.

    Pleasants, J. Milkweed restoration in the Midwest for monarch butterfly recovery: estimates of milkweeds lost, milkweeds remaining and milkweeds that must be added to increase the monarch population. Insect Conserv. Divers. https://doi.org/10.1111/icad.12198 (2016).

  • 53.

    Thogmartin, W. E. et al. Monarch butterfly population decline in North America: identifying the threatening processes. R. Soc. Open Sci. 4, 170760 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 54.

    Stenoien, C. et al. Monarchs in decline: a collateral landscape-level effect of modern agriculture. Insect Sci. 25, 528–541 (2018).

    PubMed 

    Google Scholar
     

  • 55.

    Lipsey, M. K. et al. One step ahead of the plow: Using cropland conversion risk to guide Sprague’s Pipit conservation in the northern Great Plains. Biol. Conserv. 191, 739–749 (2015).


    Google Scholar
     

  • 56.

    Runge, C. A. et al. Unintended habitat loss on private land from grazing restrictions on public rangelands. J. Appl. Ecol. 56, 52–62 (2019).

  • 57.

    Sylvester, K. M., Gutmann, M. P. & Brown, D. G. At the margins: agriculture, subsidies and the shifting fate of North America’s native grassland. Popul. Environ. 37, 362–390 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 58.

    Claassen, R., Wade, T., Breneman, V., Williams, R. & Loesch, C. Preserving native grassland: Can Sodsaver reduce cropland conversion? J. Soil Water Conserv. 73, 67A–73A (2018).


    Google Scholar
     

  • 59.

    Lark, T. J. Protecting our prairies: Research and policy actions for conserving America’s grasslands. Land Use Policy 97, 104727 (2020).


    Google Scholar
     

  • 60.

    Hudson, L. N. et al. The database of the PREDICTS (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems) project. Ecol. Evol. 7, 145–188 (2017).

    PubMed 

    Google Scholar
     

  • 61.

    Yesson, C. et al. How global is the global biodiversity information facility? PLoS ONE 2, e1124 (2007).

  • 62.

    Hertel, T. W. The global supply and demand for agricultural land in 2050: a perfect storm in the making? Am. J. Agric. Econ. 93, 259–275 (2011).


    Google Scholar
     

  • 63.

    Tilman, D., Balzer, C., Hill, J. & Befort, B. L. Global Food Demand and the Sustainable Intensification of Agriculture. Proc. Natl Acad. Sci. USA 108, 20260–20264 (2011).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 64.

    Babcock, B. A. Extensive and intensive agricultural supply response. Annu Rev. Resour. Econ. 7, 333–348 (2015).


    Google Scholar
     

  • 65.

    Zhao, X., Van Der Mensbrugghe, D. & Tyner, W. E., Modeling land physically in CGE models: new insights on intensive and extensive margins, 2017 Annual Meeting, July 30-August 1, Chicago, Illinois 258363, Agricultural and Applied Economics Association. https://doi.org/10.22004/ag.econ.258363 (2017).

  • 66.

    Barr, K. J., Babcock, B. A., Carriquiry, M. A., Nassar, A. M. & Harfuch, L. Agricultural Land Elasticities in the United States and Brazil. Appl. Econ. Perspect. Policy 33, 449–462 (2011).


    Google Scholar
     

  • 67.

    Molotoks, A. et al. Global projections of future cropland expansion to 2050 and direct impacts on biodiversity and carbon storage. Glob. Change Biol. 24, 5895–5908 (2018).


    Google Scholar
     

  • 68.

    Boysen, L. R., Lucht, W. & Gerten, D. Trade-offs for food production, nature conservation and climate limit the terrestrial carbon dioxide removal potential. Glob. Change Biol. 23, 4303–4317 (2017).

    ADS 

    Google Scholar
     

  • 69.

    Zabel, F. et al. Global impacts of future cropland expansion and intensification on agricultural markets and biodiversity. Nat. Commun. 10, 1–10 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • 70.

    Campbell, B. M. et al. Agriculture production as a major driver of the Earth system exceeding planetary boundaries. Ecol. Soc. 22, 8 (2017).

  • 71.

    Steffen, W. et al. Planetary boundaries: guiding human development on a changing planet. Science 347, 1259855 (2015).

    PubMed 

    Google Scholar
     

  • 72.

    Foley, J. A. et al. Solutions for a cultivated planet. Nature 478, 337–342 (2011).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 73.

    Godfray, H. C. J. et al. Food security: the challenge of feeding 9 billion people. Science 327, 812–818 (2010).

    ADS 
    CAS 

    Google Scholar
     

  • 74.

    Mourad, M. Recycling, recovering and preventing “food waste”: competing solutions for food systems sustainability in the United States and France. J. Clean. Prod. 126, 461–477 (2016).


    Google Scholar
     

  • 75.

    Parfitt, J., Barthel, M. & Macnaughton, S. Food waste within food supply chains: quantification and potential for change to 2050. Philos. Trans. R. Soc. B Biol. Sci. 365, 3065–3081 (2010).


    Google Scholar
     

  • 76.

    Shepon, A., Eshel, G., Noor, E. & Milo, R. The opportunity cost of animal based diets exceeds all food losses. Proc. Natl Acad. Sci. USA 115, 3804–3809 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 77.

    Lobell, D. B., Cassman, K. G. & Field, C. B. Crop yield gaps: their importance, magnitudes, and causes. Annu. Rev. Environ. Resour. 34, 179 (2009).


    Google Scholar
     

  • 78.

    Mueller, N. D. et al. Closing yield gaps through nutrient and water management. Nature 490, 254–257 (2012).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 79.

    Howell, T. A. Enhancing water use efficiency in irrigated agriculture. Agron. J. 93, 281–289 (2001).


    Google Scholar
     

  • 80.

    Zhang, X. et al. Managing nitrogen for sustainable development. Nature 528, 51–59 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 81.

    Kladivko, E. J. et al. Cover crops in the upper midwestern United States: Potential adoption and reduction of nitrate leaching in the Mississippi River Basin. J. Soil Water Conserv. 69, 279–291 (2014).


    Google Scholar
     

  • 82.

    Basche, A. D. & DeLonge, M. S. Comparing infiltration rates in soils managed with conventional and alternative farming methods: A meta-analysis. PLoS ONE 14, e0215702 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 83.

    Chandrasoma, J. M., Christianson, R. D. & Christianson, L. E. Saturated buffers: What is their potential impact across the US Midwest? Agric. Environ. Lett. 4, https://doi.org/10.2134/ael2018.11.0059 (2019).

  • 84.

    Schulte, L. A. et al. Prairie strips improve biodiversity and the delivery of multiple ecosystem services from corn–soybean croplands. Proc. Natl Acad. Sci. USA 114, 11247–11252 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • 85.

    Renard, D. & Tilman, D. National food production stabilized by crop diversity. Nature 571, 257 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 86.

    Basso, B., Shuai, G., Zhang, J. & Robertson, G. P. Yield stability analysis reveals sources of large-scale nitrogen loss from the US Midwest. Sci. Rep. 9, 5774 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 87.

    Fargione, J. E. et al. Natural climate solutions for the United States. Sci. Adv. 4, eaat1869 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 88.

    LaCanne, C. E. & Lundgren, J. G. Regenerative agriculture: merging farming and natural resource conservation profitably. PeerJ 6, e4428 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 89.

    Lark, T. J., Mueller, R. M., Johnson, D. M. & Gibbs, H. K. Measuring land-use and land-cover change using the U.S. department of agriculture’s cropland data layer: Cautions and recommendations. Int. J. Appl. Earth Obs. Geoinf. 62, 224–235 (2017).

    ADS 

    Google Scholar
     

  • 90.

    Lark, T. J. America’s Food- and Fuel-Scapes: Quantifying Agricultural Land-Use Change Across the United States (The University of Wisconsin, Madison, 2017).

  • 91.

    Homer, C. et al. Completion of the 2011 National Land Cover Database for the conterminous United States–representing a decade of land cover change information. Photogramm. Eng. Remote Sens. 81, 345–354 (2015).


    Google Scholar
     

  • 92.

    Kim, K. E. Adaptive majority filtering for contextual classification of remote sensing data. Int. J. Remote Sens. 17, 1083–1087 (1996).

    ADS 

    Google Scholar
     

  • 93.

    Tobler, W. R. A computer movie simulating urban growth in the Detroit region. Econ. Geogr. 46, 234–240 (1970).


    Google Scholar
     

  • 94.

    Miller, H. J. Tobler’s first law and spatial analysis. Ann. Assoc. Am. Geogr. 94, 284–289 (2004).


    Google Scholar
     

  • 95.

    Breiman, L. Random forests. Mach. Learn 45, 5–32 (2001).

    MATH 

    Google Scholar
     

  • 96.

    Jeong, J. H. et al. Random forests for global and regional crop yield predictions. PLoS ONE 11, e0156571 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 97.

    USDA – National Agricultural Statistics Service. Guide to NASS Surveys http://www.nass.usda.gov/Surveys/Guide_to_NASS_Surveys/index.php. (2020).

  • 98.

    Soil Survey Staff, N. R. C. S., United States Department of Agriculture. Soil Survey Geographic (SSURGO) Database for the United States. (2018).

  • 99.

    Gesch, D. et al. The national elevation dataset. Photogramm. Eng. Remote Sens. 68, 5–32 (2002).


    Google Scholar
     

  • 100.

    Gorelick, N. et al. Google Earth Engine: planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 202, 18–27 (2017).

    ADS 

    Google Scholar
     

  • 101.

    Team, R. C. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, Austria, 2017).

  • 102.

    Hydric Soils—Introduction | NRCS Soils. https://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/use/hydric/?cid=nrcs142p2_053961 (2020).

  • 103.

    Cowardin, L. M., Shaffer, T. L. & Arnold, P. M. Evaluations of Duck Habitat and Estimation of Duck Population Sizes with a Remote-Sensing-Based System. https://apps.dtic.mil/docs/citations/ADA322572 (1995).

  • 104.

    Jin, S. et al. Overall methodology design for the United States national land cover database 2016 products. Remote Sens. 11, 2971 (2019).

    ADS 

    Google Scholar
     

  • Source Article