• Mon. Sep 21st, 2020

Dimancherouge

Technology

Dysfunction of dimorphic sperm impairs male fertility in the silkworm

  • 1.

    Hodgson, A. N. Paraspermatogenesis in gastropod molluscs. Invertebr. Reprod. Dev. 31, 31–38 (1997).


    Google Scholar
     

  • 2.

    Hodgson, A. N. & Heller, J. Spermatozoon structure and spermiogenesis in four species of Melanopsis (Gastropoda, Prosobranchia, Cerithioidea) from Israel. Invertebr. Reprod. Dev. 37, 185–200 (2000).


    Google Scholar
     

  • 3.

    Boi, S. & Ferraguti, M. Temporal pattern of the double sperm line production in Tubifex tubifex (Annelida, Oligochaeta). Hydrobiologia 463, 103–106 (2001).


    Google Scholar
     

  • 4.

    Ferraguti, M., Marotta, R. & Martin, P. The double sperm line in Isochaetides (Annelida, Clitellata, Tubificidae). Tissue Cell 34, 305–314 (2002).

    CAS 
    PubMed 

    Google Scholar
     

  • 5.

    Koehler, J. K. & Birky, C. W. An electron microscope study of the dimorphic spermatozoa of Asplanchna (Rotifera). II. The development of “atypical spermatozoa”. Z. Zellforsch. Mikrosk. Anat. 70, 303–321 (1966).

    CAS 
    PubMed 

    Google Scholar
     

  • 6.

    Meves, F. Ueber oligopyrene und apyrene spermien und über ihre Entstehung, nach Beobachtungen an Paludina und Pygaera. Arch. f. Mikrosk. Anat. 61, 1–84 (1902).


    Google Scholar
     

  • 7.

    Alberti, G. Double spermatogenesis in Chelicerata. J. Morphol. 266, 281–297 (2005).

    PubMed 

    Google Scholar
     

  • 8.

    Friedländer, M. Control of the eupyrene-apyrene sperm dimorphism in Lepidoptera. J. Insect Physiol. 43, 1085–1092 (1997).

    PubMed 

    Google Scholar
     

  • 9.

    Eckelbarger, K. J., Yong, C. M. & Cameron, J. L. Ultrastructure and development of dimorphic sperm in the abyssal echinoid Phrissocystis multispina (Echinodermata: Echinoidea): implications for deep sea reproductive biology. Biol. Bull. 176, 257–271 (1989).

    PubMed 

    Google Scholar
     

  • 10.

    Hayakawa, Y., Komaru, A. & Munehara, H. Ultrastructural observations of eu- and paraspermiogenesis in the cottid fish Hemilepidotus gilberti (Teleostei: Scorpaeniformes: Cottidae). J. Morphol. 253, 243–254 (2002).

    PubMed 

    Google Scholar
     

  • 11.

    Phillips, D. M. Morphogenesis of the lacinate appendages of Lepidopteran spermatozoa. J. Ultrastruct. Res. 34, 567–585 (1971).

    CAS 
    PubMed 

    Google Scholar
     

  • 12.

    Sonnenschein, M. & Häuser, C. L. Presence of only eupyrene spermatozoa in adult males of the genus Micropterix hübner and its phylogenetic significance (Lepidoptera: Zeugloptera, Micropterigidae). Int. J. Insect Morphol. Embryol. 19, 269–276 (1990).


    Google Scholar
     

  • 13.

    Friedländer, M. Phylogenetic branching of Trichoptera and Lepidoptera: an ultrastructural analysis on comparative spermatology. J. Ultrastruct. Res. 83, 141–147 (1983).

    PubMed 

    Google Scholar
     

  • 14.

    Friedländer, M., Seth, R. K. & Reynolds, S. E. Eupyrene and apyrene sperm: dichotomous spermatogenesis in Lepidoptera. Adv. Insect Phys. 32, 206–308 (2005).


    Google Scholar
     

  • 15.

    Chang, H. & Miller, D. D. Further observations on polymegaly in species of the Drosophila affinis subgroup. Trans. Neb. Acad. Sci. 9, 13–22 (1981).


    Google Scholar
     

  • 16.

    Pasini, M. E., Redi, C. A., Caviglia, O. & Perotti, M. E. Ultrastructural and cytochemical analysis of sperm dimorphism in Drosophila subobscura. Tissue Cell 28, 165–175 (1996).

    CAS 
    PubMed 

    Google Scholar
     

  • 17.

    Snook, R. R. & Karr, T. L. Only long sperm are fertilization-competent in six sperm-heteromorphic Drosophila species. Curr. Biol. 8, 291–294 (1998).

    CAS 
    PubMed 

    Google Scholar
     

  • 18.

    Swallow, J. G. & Wilkinson, G. S. The long and short of sperm polymorphism in insects. Biol. Rev. Camb. Philos. Soc. 77, 153–182 (2002).

    PubMed 

    Google Scholar
     

  • 19.

    Sahara, K. & Kawamura, N. Double copulation of a female with sterile diploid and polyploid males recovers fertility in Bombyx mori. Zygote 10, 23–29 (2002).

    PubMed 

    Google Scholar
     

  • 20.

    Osanai, M., Kasuga, H. & Aigaki, T. Physiological role of apyrene spermatozoa of Bombyx mori. Experientia 43, 593–596 (1987).


    Google Scholar
     

  • 21.

    Silberglied, R. E., Shepherd, J. G. & Dickinson, J. L. Eunuchs: the role of apyrene sperm in Lepidoptera. Am. Nat. 123, 255–265 (1984).


    Google Scholar
     

  • 22.

    Holt, G. G. & North, D. T. Effects of gamma irradiation on the mechanisms of sperm transfer in Trichoplusia ni. J. Insect Physiol. 16, 2211–2222 (1970).


    Google Scholar
     

  • 23.

    Friedländer, M. & Gitay, H. The fate of the normal-anucleated spermatozoa in inseminated females of the silkworm Bombyx mori. J. Morphol. 138, 121–129 (1972).

    PubMed 

    Google Scholar
     

  • 24.

    Katsuno, S. Studies on eupyrene and apyrene spermatozoa in the silkworm, Bombyx mori L. (Lepidoptera: Bombycidae). I. The intratesticular behaviour of the spermatozoa at various stages from the 5th-instar to the adult. Appl. Entomol. Zool. 12, 142–153 (1977).


    Google Scholar
     

  • 25.

    Katsuno, S. Studies on eupyrene and apyrene spermatozoa in the silkworm, Bombyx mori L. (Lepidoptera: Bombycidae). V. The factor related to the separation of eupyrene sperm bundles. Appl. Entomol. Zool. 12, 370–371 (1977).


    Google Scholar
     

  • 26.

    Cook, P. A. & Wedell, N. Non-fertile sperm delay female remating. Nature 397, 486 (1999).

    CAS 

    Google Scholar
     

  • 27.

    Mongue, A. J., Hansen, M. E., Gu, L., Sorenson, C. E. & Walters, J. R. Nonfertilizing sperm in Lepidoptera show little evidence for recurrent positive selection. Mol. Ecol. 28, 2517–2530 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 28.

    Xu, J. et al. Bombyx mori P-element somatic inhibitor (BmPSI) is a key auxiliary factor for silkworm male sex determination. PLoS Genet. 13, e1006576 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 29.

    Li, Z. et al. Bombyx mori histone methyltransferase BmAsh2 is essential for silkworm piRNA-mediated sex determination. PLoS Genet. 14, e1007245 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 30.

    Chen, K. et al. Maelstrom regulates spermatogenesis of the silkworm, Bombyx mori. Insect Biochem. Mol. Biol. 109, 43–51 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 31.

    Penalva, L. O. & Sánchez, L. RNA binding protein Sex-Lethal (Sxl) and control of Drosophila sex determination and dosage compensation. Microbiol. Mol. Biol. Rev. 67, 343–359 (2003).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 32.

    Salz, H. K. & Erickson, J. W. Sex determination in Drosophila: the view from the top. Fly 4, 60–70 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 33.

    Izumi, N. et al. Identification and functional analysis of the Pre-piRNA 3’ trimmer in silkworms. Cell 164, 962–973 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 34.

    Ding, D. et al. PNLDC1 is essential for piRNA 3’ end trimming and transposon silencing during spermatogenesis in mice. Nat. Commun. 8, 819 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 35.

    Zhang, Y. et al. An essential role for PNLDC1 in piRNA 3’ end trimming and male fertility in mice. Cell Res. 27, 1392–1396 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 36.

    Nishimura, T. et al. PNLDC1, mouse pre-piRNA Trimmer, is required for meiotic and post-meiotic male germ cell development. EMBO Rep. 19, e44957 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 37.

    Niimi, T. et al. Molecular cloning and chromosomal localization of the Bombyx Sex-lethal gene. Genome 49, 263–268 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • 38.

    Yamashiki, N. & Kawamura, N. Behaviors of nucleus, basal bodies and microtubules during eupyrene and apyrene spermiogenesis in the silkworm, Bombyx mori (Lepidoptera). Dev. Growth Differ. 39, 715–722 (1997).

    CAS 
    PubMed 

    Google Scholar
     

  • 39.

    Yamashiki, N. & Kawamura, N. Behavior of centrioles during meiosis in the male silkworm, Bombyx mori (Lepidoptera). Dev. Growth Diff. 40, 619–630 (1998).

    CAS 

    Google Scholar
     

  • 40.

    Kawamura, N., Yamashiki, N. & Bando, H. Behavior of mitochondria during eupyrene and apyrene spermatogenesis in the silkworm, Bombyx mori (Lepidoptera), investigated by fluorescence in situ hybridization and electron microscopy. Protoplasma 202, 223–231 (1998).

    CAS 

    Google Scholar
     

  • 41.

    Sakai, H. et al. Dimorphic sperm formation by Sex-lethal. Proc. Natl Acad. Sci. USA 116, 10412–10417 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 42.

    Katsuno, S. Studies on eupyrene and apyrene spermatozoa in the silkworm, Bombyx mori L. (Lepidoptera: Bombycidae). IV. The behaviour of the spermatozoa in the internal reproductive organs of female adults. Appl. Entomol. Zool. 12, 352–359 (1977).


    Google Scholar
     

  • 43.

    Saxe, J. P., Chen, M., Zhao, H. & Lin, H. Tdrkh is essential for spermatogenesis and participates in primary piRNA biogenesis in the germline. EMBO J. 32, 1869–1885 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 44.

    Nishida, K. M. et al. Hierarchical roles of mitochondrial Papi and Zucchini in Bombyx germline piRNA biogenesis. Nature 555, 260–264 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 45.

    Moreira, J., Araújo, V. A., Báo, S. N. & Lino-Neto, J. Structural and ultrastructural characteristics of male reproductive tract and spermatozoa in two Cryptinae species (Hymenoptera: Ichneumonidae). Micron 41, 187–192 (2010).

    PubMed 

    Google Scholar
     

  • 46.

    Rego, L. N. A. A., Alevi, K. C., Azeredo-Oliveira, M. T. V. & Madi-Ravazzi, L. Ultrastructural features of spermatozoa and their phylogenetic application in Zaprionus (Diptera, Drosophilidae). Fly 10, 47–52 (2016).


    Google Scholar
     

  • 47.

    Werner, M. & Simmons, L. W. Insect sperm motility. Biol. Rev. Camb. Philos. Soc. 83, 191–208 (2008).

    PubMed 

    Google Scholar
     

  • 48.

    Rego, L. N. A. A., Silistino-Souza, R., Azeredo-Oliveira, M. T. V. D. & Madi-Ravazzi, L. Spermatogenesis of Zaprionus indianus and Zaprionus sepsoides (Diptera, Drosophilidae): cytochemical, structural and ultrastructural characterization. Genet. Mol. Biol. 36, 50–60 (2013).

    CAS 

    Google Scholar
     

  • 49.

    Gracielle, I. M., Tidon, R. & Báo, S. N. Structure and ultrastructure of spermatozoon in six species of Drosophilidae (Diptera). Tissue Cell 48, 596–604 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 50.

    Laurinyecz, B. et al. Sperm-Leucylaminopeptidases are required for male fertility as structural components of mitochondrial paracrystalline material in Drosophila melanogaster sperm. PLoS Genet. 15, e1007987 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 51.

    Aravin, A. A., Hannon, G. J. & Brennecke, J. The Piwi-piRNA pathway provides an adaptive defense in the transposon arms race. Science 318, 761–764 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • 52.

    Houwing, S. et al. A role for Piwi and piRNAs in germ cell maintenance and transposon silencing in Zebrafish. Cell 129, 69–82 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • 53.

    Klattenhoff, C. & Theurkauf, W. Biogenesis and germline functions of piRNAs. Development 135, 3–9 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • 54.

    Quénerch’du, E., Anand, A. & Kai, T. The piRNA pathway is developmentally regulated during spermatogenesis in Drosophila. RNA 22, 1044–1054 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 55.

    Gou, L. T. et al. Ubiquitination-deficient mutations in human Piwi cause male infertility by impairing histone-to-protamine exchange during spermiogenesis. Cell 169, 1090–1104.e13 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 56.

    Gumbiner, B. M. Regulation of cadherin adhesive activity. J. Cell Biol. 148, 399–404 (2000).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 57.

    Halbleib, J. M. & Nelson, W. J. Cadherins in development: cell adhesion, sorting, and tissue morphogenesis. Genes Dev. 20, 3199–3214 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • 58.

    Qian, X. et al. Actin binding proteins, spermatid transport and spermiation. Semin. Cell Dev. Biol. 30, 75–85 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • 59.

    Lie, P. P., Chan, A. Y., Mruk, D. D., Lee, W. M. & Cheng, C. Y. Restricted Arp3 expression in the testis prevents blood-testis barrier disruption during junction restructuring at spermatogenesis. Proc. Natl Acad. Sci. USA 107, 11411–11416 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • 60.

    Xiao, X. et al. N-wasp is required for structural integrity of the blood-testis barrier. PLoS Genet. 10, e1004447 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 61.

    Rotkopf., S. et al. The WASp-based actin polymerization machinery is required in somatic support cells for spermatid maturation and release. Development 138, 2729–2739 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • 62.

    Dubey, P., Shirolikar, S. & Ray, K. Localized, reactive F-actin dynamics prevents abnormal somatic cell penetration by mature spermatids. Dev. Cell 38, 507–521 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 63.

    Dubey, P., Kapoor, T., Gupta, S., Shirolikar, S. & Ray, K. Atypical septate junctions maintain the somatic enclosure around maturing spermatids and prevent premature sperm release in Drosophila testis. Biol. Open 8, bio036939 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 64.

    Szöllösi, A. in Insect Ultrastructure (eds King, R. C. & Akai, H.) Vol. 1, 32–60 (Springer, Boston, MA, 1982).

  • 65.

    Sahara, K. & Kawamura, N. Roles of actin networks in peristaltic squeezing of sperm bundles in Bombyx mori. J. Morphol. 259, 1–6 (2004).

    PubMed 

    Google Scholar
     

  • 66.

    Li, B. & Dewey, C. N. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 12, 323 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 67.

    Audic, S. & Claverie, J. M. The significance of digital gene expression profiles. Genome Res. 7, 986–995 (1997).

    CAS 
    PubMed 

    Google Scholar
     

  • 68.

    Abdi, H. in Encyclopedia of Measurement and Statistics (ed. Salkind, N. J.) 103–107 (Sage, Thousand Oaks, CA, 2007).

  • 69.

    Benjamini, Y. & Yekutieli, D. The control of the false discovery rate in multiple testing under dependency. Ann. Stat. 29, 1165–1188 (2001).


    Google Scholar
     

  • 70.

    Pavlou, H. J. et al. Neural circuitry coordinating male copulation. Elife 5, e20713 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Source Article